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using the QMQSAR program are described. In addition to rapidly providing predictions that could be used
to facilitate the screening of catalysts for novel substrates, the QMQSAR program identifies the portions
of the substrate that most directly influence the enantioselectivity. The lack of an underlying relationship
between all the substrates in one case, requires two quantitative structure selectivity relationships (QSSR)
models to describe all of the experimental results.
nantiomeric excess
uantum molecular interaction fields
echanism

. Introduction

The ultimate goals of asymmetric catalysis are the discovery of
eactions that provide desired products with high enantioselectiv-
ties and yields. Given the immense effort applied in this endeavor,
omputational tools are a logical resource to facilitate the design
nd optimization of asymmetric reactions [1,2]. However, even
ith massive increases in computer speed, the number of variables

n any asymmetric transformation makes modeling of discrete tran-
ition states often challenging. The use of other computational tools
ncompassing linear free energy relationships, such as quantita-
ive structure activity relationships (QSAR) [3,4], has been shown
o provide useful information. In prior reports [5–8] we introduced
he development of grid-based quantitative structure selectivity
elationship (QSSR) models using quantum mechanical molecular
nteraction fields for correlating enantiomeric excess with catalyst
tructure. Other workers have embraced this approach with success
9–13]. In addition, intriguing reports utilizing QSSR models to pre-
ict substrate enantioselection with chiral catalysts have appeared
14,15]. Here, we report our independent efforts toward generat-
ng models to predict enantioselection for substrates which has also
ed to a tool to identify potential mechanistic differences between
ubstrate classes.
� This paper is part of a special issue on Computational Catalysis.
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2. Methods and experimental data

2.1. Quantum molecular interaction fields

The enantiomeric excesses arising from the aldehyde substrates
were analyzed with 3D-QSSR (quantitative structural selectivity
relationship) methods employing quantum molecular interaction
fields as implemented in the program QMQSAR [16]. Although,
detailed descriptions on how this program computes and utilizes
molecular fields are described elsewhere [5–8,16], a short intro-
duction is provided here.

For the aldehydes, generation of a model to explain the enan-
tioselection commences with calculation of the lowest energy
substrate conformers. Initially, conformers of the compounds were
constructed and computed using the semi-empirical method PM3
in Spartan [17]. The lowest energy conformers of the substrates
were aligned and were then used with the QMQSAR program. The
important feature here is that all the substrates are treated and
aligned in the same way so that their relationships can be inter-
rogated; similar relationships (i.e. t-Bu is larger than Me, methoxy
is more electron rich than trifluoromethyl, etc.) would likely hold
even if a higher energy ground state accounts for the predominant
reaction pathway. The requisite quantum mechanical interaction
fields were computed using single-point PM3 semi-empirical cal-
culations with Divcon [18] and were in the form of electrostatic
potential field (EPF) values at ordered grid points encompassing
the substrates.
2.2. Model generation

Grid spacing in the EPF was initially 0.35 Å and was adjusted
during the course of the model building to a finer grid around cor-

http://www.sciencedirect.com/science/journal/13811169
http://www.elsevier.com/locate/molcata
mailto:marisa@sas.upenn.edu
dx.doi.org/10.1016/j.molcata.2010.03.030
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Table 1
Experimental and calculated substrate enantioselection for the reaction in Eq. (1).

.

Entry RCHO Calculated Experimental Entry RCHO Calculated Experimental

�Gee
a,b

(kcal/mol)
ee (%) �Gee

a,c

(kcal/mol)
ee (%)d �Gee

a,b

(kcal/mol)
ee (%) �Gee

a,c

(kcal/mol)
ee (%)d

1 1.49 88 1.72 92 7 1.64 91 1.49 88

2 1.39 86 1.22 81 8 1.56 89 1.16 79

3 2.09 96 1.88 94 9 0.71 57 0.92 69

4 1.45 87 1.49 88 10 0.96 71 0.73 59

5 1.24 82 0.94 70 11 1.67 91 1.40 86

6 1.37 85 1.49 88
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a �Gee refers to the energy difference between the transition structures of the pa
b Calculated values from a leave-one-out model constructed from the 10 remaini
c Values obtained from ee results by using �G = −RT ln[(S)/(R)].
d From Ref. [21].

elated EPF points according to a MAXMIN diversity algorithm [19].
he EPF values represent the pool of independent variables from
hich the multi-linear regression (MLR) models were built. The
LR models between the EPF points and the �Gee values of the sub-

trates were optimized by a simulated Monte Carlo approach [16].
nitial models were constructed using all substrates and from 1 to 4
PF points generating expressions according to the following equa-
ion: �Gcalc = a + b × EPF1 + c × EPF2 + d × EPF3 + e × EPF4 where a–e
re constants/coefficients calculated by the program and where
PF1–4 are the values of the EPF at gridpoints 1–4 selected by
he program. Models were evaluated by their goodness-of-fit (r2)
nd the standard deviation (SD) with respect to the experimen-
al data. Models were further refined using a leave-one-out [20]
nalysis, where n models containing all the combinations of n − 1
ubstrates were constructed; for each model the substrate absent
n the parameterization set was then calculated giving rise to a pre-
icted enantioselection. The goodness-of-fit of these leave-one-out
LOO) cross-validated predictions is summarized in the term r2

LOO.
.3. Experimental data

All experimental data was obtained from Refs. [21,22]. Sub-
trates were compared only for reactions conducted in the same
ys leading to the S and R enantiomeric products.
strates.

solvent, at the same temperature, and with the same catalyst and
catalyst loading. For all the analyses, the enantioselectivities are
converted to �Gee using the relationship: �Gee = −RT ln[(S)/(R)] so
that the variables used in the correlation possess an underlying
linear relationship.

3. Results and discussion

In this study, instead of correlating catalyst structure to selectiv-
ity, we correlate the substrate structure to selectivity for reactions
with the same catalyst. A prerequisite for this process is data for
≥10 substrates that encompass a wide enantioselectivity range.
One candidate is outlined in Eq. (1) [21]. These calculations are
even simpler than those described for the chiral catalysts [5–8],
since only the structures of the substrates (no metals, etc.) need to
be calculated. In this case, after the rapid calculation of the ground
state structures, the substrates were aligned about the aryl ring
of the aldehyde and the EFP fields were calculated quickly (sec-

onds to minutes). Models with 1–4 EPF points per substrate were
then constructed and evaluated. Two EPF points were sufficient
to generate models with high r2 and SD values. Furthermore, a
leave-one-out analysis [20] indicated that the models were highly
predictive for the 11 substrates listed in Table 1 with a SDLOO of
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employed. When two sets of models were generated, two-point
models with much lower standard deviations could be identified.
For example, with entries 11–20 of Table 2 the model displayed
a standard deviation of 0.09 kcal/mol and an r2 value of 0.98.
In addition, satisfactorily cross-validated models were obtained.
ig. 1. Cross-validation results of substrates from entries 1 to 11 (Table 1): plot
f predictions from leave-one-out models constructed from the 10 remaining sub-
trates (y = 0.85x + 0.30, r2

LOO = 0.67, CC = 0.82).

.35 kcal/mol.The plot of experimental and calculated �Gee val-
es in Fig. 1 confirms the ability of the leave-one-out models to
redict the selectivity of substrates that were not used in construc-
ion of the actual model. Notably, a good cross-validation correlation
as observed with r2

LOO = 0.67 and a correlation coefficient (CC)
f 0.82 (CC offers a rough gauge of the ability of the program to
orrectly rank the selectivities of different substrates). This tool
ould be invaluable in the many instances when asymmetric trans-

ormations of novel substrates through a well-known process (i.e.
symmetric hydrogenation) are required. With the wealth of data
vailable for a broad range of substrates and catalysts, it would
e straightforward to construct models for each catalyst and then
creen the novel substrates in silico in a matter of minutes. Such
process would allow the chemist to rapidly refine selection of

atalysts for initial screening.
In addition, the EPF points identified in the models (Fig. 2) indi-

ate that two regions of the substrates account for most of the
ariance in enantiomeric excess; groups of different sizes or elec-
ronic aspects at these positions modify the enantioselection. In
ine with our general understanding of this transformation, the ESP
oints are primarily near the aldehyde group, probably reflecting
lectronic differences in the aldehyde carbonyl which coordinates
he catalyst, or the point of variation on the aromatic ring, most
ikely reflecting steric biases between these sites and the catalyst.

With this success in hand, a second more challenging case with a
roader range of substrates (Eq. (2), Table 2, R = alkyl and aryl) was
nalyzed [22]. After aligning the substrates using the CHO atoms
f the aldehyde, these structures were analyzed with the QMQSAR
rogram as described above.
Fig. 2. Superposition of the EPF points from the 11 leave-one-out models around
the 11 aldehyde substrates listed in Table 1 (blue = positive EFP value correlates to
higher ee, red = positive EFP value correlates to lower ee).

Interestingly, one model does not account for all of the results.
In undertaking the model construction, models with 1–4 EPF
points per substrate were evaluated again. Fitted models employ-
ing two points initially appeared promising and took on the form:
�Gcalc = 2.35 + 0.55 × EPF1 − 0.15 × EPF2 (SD = 0.43, r2 = 0.68). How-
ever, the high standard deviation was troublesome. Furthermore,
despite a thorough evaluation of the parameters, one model could
not be identified that yielded highly cross-validated results in a
leave-one-out analysis [20].

To locate the source of this problem, partial substrate sets were
Fig. 3. Cross-validation results of substrates from entries 1 to 10 (Table 2): plot of
predictions from leave-one-out models constructed from the 9 remaining substrates
(y = 0.82x + 0.01, r2

LOO = 0.61, CCLOO = 0.77).
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Table 2
Experimental and calculated substrate enantioselection for the reaction in Eq. (2).

Entry RCHO Calculated Experimental Entry RCHO Calculated Experimental

�Gee
a,b

(kcal/mol)
ee (%) �Gee

a,c

(kcal/mol)
ee (%)d �Gee

a,e

(kcal/mol)
ee (%) �Gee

a,c

(kcal/mol)
ee (%)d

1 1.98 96 2.62 99 11 1.63 93 1.81 95

2 1.98 96 2.07 97 12 1.69 94 1.72 94

3 1.82 95 1.64 93 13 2.72 99 2.07 97

4 0.04 4 0.96 75 14 1.80 95 1.93 96

5 1.44 90 1.81 95 15 0.03 3 0.02 2

6 0.23 23 1.18 83 16 1.00 76 0.64 57

7 2.16 97 2.27 98 17 0.10 10 0.22 22

9 1.76 94 1.81 95 19 0.69 60 0.56 51

10 0.97 75 1.46 90 20 2.19 97 0.56 51

a �Gee refers to the energy difference between the transition structures of the pathways leading to the S and R enantiomeric products.
b Calculated values from a leave-one-out model constructed from the 9 remaining substrates in entries 1–10.

g subs
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n
l
o
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c

c Values obtained from ee results by using �G = −RT ln[(S)/(R)].
d From Ref. [22].
e Calculated values from a leave-one-out model constructed from the 9 remainin

or entries 1–10, one model was obtained with r2
LOO = 0.61 and

CLOO = 0.77 (Fig. 3). For entries 11–20, a second model was
btained with r2

LOO = 0.61 and CCLOO = 0.78 (Fig. 4). The fact that
o single model could accommodate all the results in spite of the

arge number of potential EFP variables explored and the success

f this method with highly different substrates and catalysts in
he past [5–15] suggests that there is no underlying relationship
etween all the substrates in this instance. One of the assumptions

n constructing these type of QSSR models is that each substrate (or
atalyst) interacts with its corresponding catalyst (or substrate) in
trates in entries 11–20.

the same way. The presence of two distinct models here may indi-
cate different mechanistic regimes. For example, interaction of the
substrate and catalyst may not be constant. The aryls of the cata-
lyst may undergo a �-stacking interaction with the aryl groups in
the first group of substrates in Table 2 resulting in a different set

of low energy transition states compared to those from the in the
second group of substrates. Similar breaks are observed with other
linear free energy relationships [23]. As a consequence, this MLR
QSSR method can probe potential mechanism changes in silico and
indicate when further experimental study is warranted.
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[22] (a) X. Zhang, C. Guo, Tetrahedron Lett. 36 (1995) 4947;
(b) J. Qiu, C. Guo, X. Zhang, J. Org. Chem. 62 (1997) 2665.
ig. 4. Cross-validation results of substrates from entries 11 to 20 (Table 2): plot of
redictions from leave-one-out models constructed from the 9 remaining substrates
y = 0.89x + 0.38, r2

LOO = 0.61, CCLOO = 0.78).

. Conclusion

The ability to predict the enantioselectivity of novel sub-
trates in asymmetric transformations as demonstrated above with
MQSAR, would be invaluable in the many instances when a
ell-known process (i.e. asymmetric hydrogenation) needs to be

pplied. Such a process would allow the chemist to rapidly refine
election of catalysts to optimize productivity in reaction screen-
ng. Furthermore, the output of the QMQSAR program provides
irect information to the user as to which portions of the substrates
re most relevant to enantioselection. In addition to predicting the

electivity of new substrates, the QSSR method described herein
ay be a simple, rapid means of assessing mechanism shifts in
any experimental systems. Further mechanism experiments to

nvestigate this proposed mechanism shift will be reported in due
ourse.
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